\(\int \frac {(a+a \sec (c+d x))^3 (A+C \sec ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [1105]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 246 \[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=-\frac {4 a^3 (27 A+17 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^3 (21 A+11 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {8 a^3 (21 A+16 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (27 A+17 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

-4/15*a^3*(27*A+17*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+
4/21*a^3*(21*A+11*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+8
/105*a^3*(21*A+16*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/9*C*(a+a*cos(d*x+c))^3*sin(d*x+c)/d/cos(d*x+c)^(9/2)+4/21
*C*(a^2+a^2*cos(d*x+c))^2*sin(d*x+c)/a/d/cos(d*x+c)^(7/2)+2/315*(63*A+73*C)*(a^3+a^3*cos(d*x+c))*sin(d*x+c)/d/
cos(d*x+c)^(5/2)+4/15*a^3*(27*A+17*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {4199, 3123, 3054, 3047, 3100, 2827, 2716, 2719, 2720} \[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {4 a^3 (21 A+11 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {4 a^3 (27 A+17 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {8 a^3 (21 A+16 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (63 A+73 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^3 (27 A+17 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {4 C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^3}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Int[((a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(-4*a^3*(27*A + 17*C)*EllipticE[(c + d*x)/2, 2])/(15*d) + (4*a^3*(21*A + 11*C)*EllipticF[(c + d*x)/2, 2])/(21*
d) + (8*a^3*(21*A + 16*C)*Sin[c + d*x])/(105*d*Cos[c + d*x]^(3/2)) + (4*a^3*(27*A + 17*C)*Sin[c + d*x])/(15*d*
Sqrt[Cos[c + d*x]]) + (2*C*(a + a*Cos[c + d*x])^3*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2)) + (4*C*(a^2 + a^2*Cos
[c + d*x])^2*Sin[c + d*x])/(21*a*d*Cos[c + d*x]^(7/2)) + (2*(63*A + 73*C)*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x
])/(315*d*Cos[c + d*x]^(5/2))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \cos (c+d x))^3 \left (C+A \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \cos (c+d x))^3 \left (3 a C+\frac {1}{2} a (9 A+C) \cos (c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx}{9 a} \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4 \int \frac {(a+a \cos (c+d x))^2 \left (\frac {1}{4} a^2 (63 A+73 C)+\frac {1}{4} a^2 (63 A+13 C) \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{63 a} \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {8 \int \frac {(a+a \cos (c+d x)) \left (\frac {9}{2} a^3 (21 A+16 C)+\frac {3}{4} a^3 (63 A+23 C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{315 a} \\ & = \frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {8 \int \frac {\frac {9}{2} a^4 (21 A+16 C)+\left (\frac {9}{2} a^4 (21 A+16 C)+\frac {3}{4} a^4 (63 A+23 C)\right ) \cos (c+d x)+\frac {3}{4} a^4 (63 A+23 C) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{315 a} \\ & = \frac {8 a^3 (21 A+16 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {16 \int \frac {\frac {63}{8} a^4 (27 A+17 C)+\frac {45}{8} a^4 (21 A+11 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{945 a} \\ & = \frac {8 a^3 (21 A+16 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (2 a^3 (21 A+11 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{15} \left (2 a^3 (27 A+17 C)\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {4 a^3 (21 A+11 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {8 a^3 (21 A+16 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (27 A+17 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {1}{15} \left (2 a^3 (27 A+17 C)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {4 a^3 (27 A+17 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^3 (21 A+11 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {8 a^3 (21 A+16 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (27 A+17 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 C (a+a \cos (c+d x))^3 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4 C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{21 a d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (63 A+73 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 12.85 (sec) , antiderivative size = 1135, normalized size of antiderivative = 4.61 \[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {\cos ^{\frac {11}{2}}(c+d x) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {(27 A+17 C) \csc (c) \sec (c)}{15 d}+\frac {C \sec (c) \sec ^5(c+d x) \sin (d x)}{18 d}+\frac {\sec (c) \sec ^4(c+d x) (7 C \sin (c)+27 C \sin (d x))}{126 d}+\frac {\sec (c) \sec ^3(c+d x) (135 C \sin (c)+63 A \sin (d x)+238 C \sin (d x))}{630 d}+\frac {\sec (c) \sec (c+d x) (105 A \sin (c)+110 C \sin (c)+378 A \sin (d x)+238 C \sin (d x))}{210 d}+\frac {\sec (c) \sec ^2(c+d x) (63 A \sin (c)+238 C \sin (c)+315 A \sin (d x)+330 C \sin (d x))}{630 d}\right )}{A+2 C+A \cos (2 c+2 d x)}-\frac {A \cos ^5(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {11 C \cos ^5(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}+\frac {9 A \cos ^5(c+d x) \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d (A+2 C+A \cos (2 c+2 d x))}+\frac {17 C \cos ^5(c+d x) \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{30 d (A+2 C+A \cos (2 c+2 d x))} \]

[In]

Integrate[((a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(Cos[c + d*x]^(11/2)*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*(((27*A + 17*C)*Csc[c]
*Sec[c])/(15*d) + (C*Sec[c]*Sec[c + d*x]^5*Sin[d*x])/(18*d) + (Sec[c]*Sec[c + d*x]^4*(7*C*Sin[c] + 27*C*Sin[d*
x]))/(126*d) + (Sec[c]*Sec[c + d*x]^3*(135*C*Sin[c] + 63*A*Sin[d*x] + 238*C*Sin[d*x]))/(630*d) + (Sec[c]*Sec[c
 + d*x]*(105*A*Sin[c] + 110*C*Sin[c] + 378*A*Sin[d*x] + 238*C*Sin[d*x]))/(210*d) + (Sec[c]*Sec[c + d*x]^2*(63*
A*Sin[c] + 238*C*Sin[c] + 315*A*Sin[d*x] + 330*C*Sin[d*x]))/(630*d)))/(A + 2*C + A*Cos[2*c + 2*d*x]) - (A*Cos[
c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*(a +
a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(
Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*Cos
[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (11*C*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x
- ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c
]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 +
Sin[d*x - ArcTan[Cot[c]]]])/(21*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) + (9*A*Cos[c + d*x]^5*Csc
[c]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}
, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 +
 Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((
Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2
])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d*(A + 2*C + A*Cos[2
*c + 2*d*x])) + (17*C*Cos[c + d*x]^5*Csc[c]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)
*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt
[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt
[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos
[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1
 + Tan[c]^2]]))/(30*d*(A + 2*C + A*Cos[2*c + 2*d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1218\) vs. \(2(274)=548\).

Time = 4.79 (sec) , antiderivative size = 1219, normalized size of antiderivative = 4.96

method result size
default \(\text {Expression too large to display}\) \(1219\)

[In]

int((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-16*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(1/8*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^
(1/2))+3/8*C*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c
)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-
1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+1/8*C*(-1/144*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^5-7/180*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-14/15*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2
*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-7/15*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))+3/8*A/sin(1/2*d*x+1/2*c)^2/(
2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2
*d*x+1/2*c)-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2
))+1/5*(1/8*A+3/8*C)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2
*c)^2*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*
x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(3/8*A+1/8*
C)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+
1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.13 \[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 \, {\left (15 i \, \sqrt {2} {\left (21 \, A + 11 \, C\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (21 \, A + 11 \, C\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (27 \, A + 17 \, C\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (27 \, A + 17 \, C\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (42 \, {\left (27 \, A + 17 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} + 15 \, {\left (21 \, A + 22 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} + 7 \, {\left (9 \, A + 34 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 135 \, C a^{3} \cos \left (d x + c\right ) + 35 \, C a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d \cos \left (d x + c\right )^{5}} \]

[In]

integrate((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/315*(15*I*sqrt(2)*(21*A + 11*C)*a^3*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)
) - 15*I*sqrt(2)*(21*A + 11*C)*a^3*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) +
21*I*sqrt(2)*(27*A + 17*C)*a^3*cos(d*x + c)^5*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) +
 I*sin(d*x + c))) - 21*I*sqrt(2)*(27*A + 17*C)*a^3*cos(d*x + c)^5*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))) - (42*(27*A + 17*C)*a^3*cos(d*x + c)^4 + 15*(21*A + 22*C)*a^3*cos(d*x +
c)^3 + 7*(9*A + 34*C)*a^3*cos(d*x + c)^2 + 135*C*a^3*cos(d*x + c) + 35*C*a^3)*sqrt(cos(d*x + c))*sin(d*x + c))
/(d*cos(d*x + c)^5)

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=a^{3} \left (\int \frac {A}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {3 A \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {3 A \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {A \sec ^{3}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {3 C \sec ^{3}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {3 C \sec ^{4}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{5}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))**3*(A+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2),x)

[Out]

a**3*(Integral(A/sqrt(cos(c + d*x)), x) + Integral(3*A*sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(3*A*sec(
c + d*x)**2/sqrt(cos(c + d*x)), x) + Integral(A*sec(c + d*x)**3/sqrt(cos(c + d*x)), x) + Integral(C*sec(c + d*
x)**2/sqrt(cos(c + d*x)), x) + Integral(3*C*sec(c + d*x)**3/sqrt(cos(c + d*x)), x) + Integral(3*C*sec(c + d*x)
**4/sqrt(cos(c + d*x)), x) + Integral(C*sec(c + d*x)**5/sqrt(cos(c + d*x)), x))

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 21.36 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.25 \[ \int \frac {(a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {70\,C\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {9}{4},\frac {1}{2};\ -\frac {5}{4};\ {\cos \left (c+d\,x\right )}^2\right )+270\,C\,a^3\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+210\,C\,a^3\,{\cos \left (c+d\,x\right )}^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+378\,C\,a^3\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{315\,d\,{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {6\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^3)/cos(c + d*x)^(1/2),x)

[Out]

(2*A*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (70*C*a^3*sin(c + d*x)*hypergeom([-9/4, 1/2], -5/4, cos(c + d*x)^2)
+ 270*C*a^3*cos(c + d*x)*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2) + 210*C*a^3*cos(c + d*x)^3*
sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2) + 378*C*a^3*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-5
/4, 1/2], -1/4, cos(c + d*x)^2))/(315*d*cos(c + d*x)^(9/2)*(1 - cos(c + d*x)^2)^(1/2)) + (6*A*a^3*sin(c + d*x)
*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*A*a^3*sin(c +
 d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*A*a^3*si
n(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2))